Latest Update: May 19th, 2024
This blog contains all the steps required to:
- Install multiple CUDA versions (e.g.,
CUDA 11.8 and
CUDA 12.1 - Manage multiple CUDA environments on Ubuntu using the utility called environment modules.
- Use this approach to avoid CUDA environment conflicts.
Environment Modules is a package that provides for the dynamic modification of a user’s environment via modulefiles. You can find more on it at https://modules.readthedocs.io/en/latest/
Install the Compatible NVIDIA Drivers (if required)
-
Add PPA GPU Drivers Repository to the System
sudo add-apt-repository ppa:graphics-drivers/ppa
-
Check GPU and available drives
ubuntu-drivers devices # install it using: sudo ubuntu-drivers
-
Install the compatible driver
# best to allow Ubuntu to autodetect and install the compatible nvidia-driver sudo ubuntu-drivers install
For example, I tried to install
nvidia-driver-545
usingsudo ubuntu-drivers install nvidia:545
command. However, I was unable to install it. There was always some or the other issue.Note: Please restart your system after installing the nvidia driver. Ideally, you should be able to get GPU state and stats using
nvidia-smi
-
Check the installed NVIDIA driver
nvidia-detector
-
Additionally, you can also install NVIDIA drivers using the Software & Updates Ubuntu app. Just go to the Additional Drivers tab, choose a driver, and click Apply Changes.
Install CUDA 11.8
and CUDA 12.1
-
Go to the https://developer.nvidia.com/cuda-toolkit-archive and select
CUDA Toolkit 11.8
from the available options. -
Choose your OS, architecture, distribution, version, and installer type. For example, in my case:
Option value OS Linux Architecture x86_64 Distribution Linux Version 22.04 Installer type deb(local) -
Follow the provided installation instructions by copying and pasting the commands into your terminal. This will install
CUDA 11.8
. Use the following commands:wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600 wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda-repo-ubuntu2204-11-8-local_11.8.0-520.61.05-1_amd64.deb sudo dpkg -i cuda-repo-ubuntu2204-11-8-local_11.8.0-520.61.05-1_amd64.deb sudo cp /var/cuda-repo-ubuntu2204-11-8-local/cuda-*-keyring.gpg /usr/share/keyrings/ sudo apt-get update sudo apt-get -y install cuda
-
Similarly, install
CUDA 12.1
using the following commands:wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600 wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda-repo-ubuntu2204-12-1-local_12.1.0-530.30.02-1_amd64.deb sudo dpkg -i cuda-repo-ubuntu2204-12-1-local_12.1.0-530.30.02-1_amd64.deb sudo cp /var/cuda-repo-ubuntu2204-12-1-local/cuda-*-keyring.gpg /usr/share/keyrings/ sudo apt-get update sudo apt-get -y install cuda
-
Make sure to copy and execute the commands above in your terminal to install
CUDA 11.8
andCUDA 12.1
on your system.
Install cuDNN
library
-
Go to https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/ and download the
cuDNN
tar forCUDA 11.x
. Note that you might need to create a developer’s account first. -
Untar the downloaded file using the following command:
tar -xvf cudnn-linux-x86_64-9.1.0.70_cuda11-archive.tar.xz # CUDA 11.x tar -xvf cudnn-linux-x86_64-9.1.0.70_cuda12-archive.tar.xz # CUDA 12.x
-
Copy the
cuDNN
files to theCUDA
toolkit files:# for CUDA 11.8 cd cudnn-linux-x86_64-9.1.0.70_cuda11-archive/ sudo cp include/cudnn*.h /usr/local/cuda-11.8/include sudo cp lib64/libcudnn* /usr/local/cuda-11.8/lib64 # for CUDA 12.1 cd cudnn-linux-x86_64-9.1.0.70_cuda12-archive/ sudo cp include/cudnn*.h /usr/local/cuda-12.1/include sudo cp lib64/libcudnn* /usr/local/cuda-12.1/lib64
-
Make the files executable:
sudo chmod a+r /usr/local/cuda-11.8/include/cudnn*.h /usr/local/cuda-11.8/lib64/libcudnn* sudo chmod a+r /usr/local/cuda-12.1/include/cudnn*.h /usr/local/cuda-12.1/lib64/libcudnn*
-
Note: Strictly speaking, you are done with the CUDA setup. You can use it by adding the CUDA bin and library path to the
PATH
andLD_LIBRARY_PATH
environment variables. For example, you can set up CUDA 11.8 by adding the following lines in the~/.bashrc
:PATH=/usr/local/cuda-11.8/bin:$PATH LD_LIBRARY_PATH=/usr/local/cuda-11.8/extras/CUPTI/lib64:$LD_LIBRARY_PATH LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH
Similarly, you can set up CUDA 12.1. However, manually changing the paths every time can be cumbersome!
Note: In case, you only want to install either of the one, CUDNN 11.x or CUDNN 12.x. The simpler way is to go to https://developer.nvidia.com/cudnn-downloads and install the CUDNN 11.x or CUDNN 12.x similar to CUDA installation.
Manage multiple CUDA versions using environment modules
-
Install the environment modules utility
Run the following commands:
sudo apt-get update sudo apt-get install environment-modules
Check the installation:
# Check the installation by running module list
You should see a list of default installed modules like git and maybe their versions displayed when you run the command
module list
. This confirms that the environment modules utility has been successfully installed on your system. -
Create modulefiles for CUDA distributions
Note: You might need root permissions to create directories and files. Use sudo in that case.
Create a directory
/usr/share/modules/modulefiles/cuda
to hold modulefiles for cuda distributionssudo mkdir -p /usr/share/modules/modulefiles/cuda
Create a modulefile
/usr/share/modules/modulefiles/cuda/11.8
forCUDA 11.8
and add the following lines:#%Module1.0 ## ## cuda 11.8 modulefile ## proc ModulesHelp { } { global version puts stderr "\tSets up environment for CUDA $version\n" } module-whatis "sets up environment for CUDA 11.8" if { [ is-loaded cuda/12.1 ] } { module unload cuda/12.1 } set version 11.8 set root /usr/local/cuda-11.8 setenv CUDA_HOME $root prepend-path PATH $root/bin prepend-path LD_LIBRARY_PATH $root/extras/CUPTI/lib64 prepend-path LD_LIBRARY_PATH $root/lib64 conflict cuda
Similarly, create a modulefile
/usr/share/modules/modulefiles/cuda/12.1
forCUDA 12.1
and add the following lines:#%Module1.0 ## ## cuda 12.1 modulefile ## proc ModulesHelp { } { global version puts stderr "\tSets up environment for CUDA $version\n" } module-whatis "sets up environment for CUDA 12.1" if { [ is-loaded cuda/11.8 ] } { module unload cuda/11.8 } set version 12.1 set root /usr/local/cuda-12.1 setenv CUDA_HOME $root prepend-path PATH $root/bin prepend-path LD_LIBRARY_PATH $root/extras/CUPTI/lib64 prepend-path LD_LIBRARY_PATH $root/lib64 conflict cuda
-
Make
CUDA 11.8
the default cuda versionCreate a file
/usr/share/modules/modulefiles/cuda.version
to makeCUDA 11.8
the default cuda module:#%Module set ModulesVersion 11.8
Note: make sure to reload your terminal.
-
Changing and Viewing the CUDA Module
To change and view the loaded CUDA module, you can use the following commands:
# Check the currently loaded module module list # Check the available modules module avail # Load a specific cuda version module load cuda/12.1 # Unload the currently loaded CUDA module module unload cuda # Load CUDA 11.8 module load cuda/11.8 # verify the paths of the loaded CUDA nvcc --version # should give the loaded CUDA version echo $CUDA_HOME echo $PATH echo $LD_LIBRARY_PATH
Note: You can add additional
CUDA
versions or other packages by creating corresponding modulefiles and following the steps outlined in this gist.
Some Useful Tips
-
What to do if
nvidia-smi
does not worksSometime, after Ubuntu update or some other weird issue. The system might not be able to detect drivers. For example, you get erros such as
nvidia-smi has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.
The best solution is to remove the current drivers and reinstall the compatible nvidia-driver.# removes all the nvidia drivers sudo apt-get --purge remove "*nvidia*" "libxnvctrl*" # reinstall the compatible driver and restart sudo ubuntu-drivers install
-
How to purge CUDA from your computer
> DO IT AT YOUR OWN RISK
# removes all the nvidia drivers sudo apt-get --purge remove "*nvidia*" "libxnvctrl*" # remove all cuda versions sudo apt-get --purge remove "*cuda*" "*cublas*" "*cufft*" "*cufile*" "*curand*" "*cusolver*" "*cusparse*" "*gds-tools*" "*npp*" "*nvjpeg*" "nsight*" "*nvvm*" # remove all cuda folders sudo rm -rf /usr/loca/cuda*
Resources and helpful links
- https://ubuntu.com/server/docs/nvidia-drivers-installation
- https://developer.nvidia.com/cuda-toolkit-archive
- https://developer.nvidia.com/cudnn-downloads
Thanks for reading! If you have any questions or feedback, please let me know on Twitter or LinkedIn.